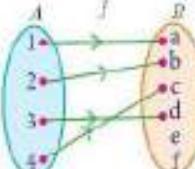
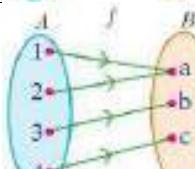
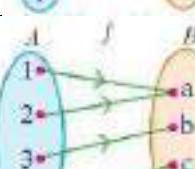
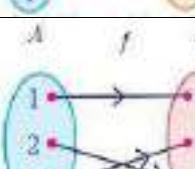
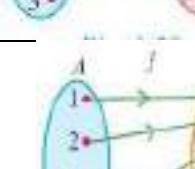


**GOVT HR SEC SCHOOL**  
THAZHUTHALI  
VILLUPURAM DISTRICT

**10<sup>TH</sup> STANDARD**

**DEFINITIONS AND FORMULAE**






PREPARED BY :

M.MOHAMED RAFFICK.,M.Sc.,B.Ed.,  
B.T.ASSISTANT.,  
GOVT HR SEC SCHOOL.,  
THAZHUTHALI.,  
VILLUPURAM DISTRICT – 604 304  
CELL : 9360202013

# 1.RELATIONS AND FUNCTIONS

| SL.NO | DEFINITIONS                                                                                                  |                                                                                                                                                                                                                                          |                          |
|-------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1     | <b>Cartesian Product</b>                                                                                     | If A and B are two non-empty sets, then the set of all ordered pairs $(a, b)$ such that $a \in A, b \in B$ is called the Cartesian Product of A and B and is denoted by $A \times B$ . Thus $A \times B = \{(a, b)   a \in A, b \in B\}$ |                          |
| 2     | <b>Relations</b>                                                                                             | Let A and B be any two non empty sets. A relation R from A to B is a subset of $A \times B$ satisfying some specified conditions. That is $R \subseteq A \times B$ .                                                                     |                          |
| 3     | <b>Null Relation</b>                                                                                         | A relation which contains no elements is called a 'Null relation'                                                                                                                                                                        |                          |
| 4     | <b>Functions</b>                                                                                             | A relation $f$ between two non empty sets X and Y is called a function from X to Y, if for every $x \in X$ there exists only one $y \in Y$ such that $(x, y) \in f$ .                                                                    |                          |
| 5     | <b>Composition of function</b>                                                                               | Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two function .Then the composition of $f$ and $g$ denoted by $g \circ f$ is defined as the function $g \circ f(x) = g(f(x))$ for all $x \in A$                                      |                          |
| 6     | <b>Vertical Line Test</b>                                                                                    | A curve drawn in a graph represents a function , if every vertical line intersects the curve in at most one point                                                                                                                        |                          |
| 7     | <b>Horizontal Line Test</b>                                                                                  | A function represented in a graph is one-one , if every horizontal line intersects the curve in at most one point.                                                                                                                       |                          |
| 8     | <b>Representation of Function</b>                                                                            | 1. Set of ordered pairs diagram<br>3. Arrow                                                                                                                                                                                              | 2.Table form<br>4. Graph |
| 9     | If $n(A) = p$ and $n(B) = q$ , then $n(A \times B) = pq$                                                     |                                                                                                                                                                                                                                          |                          |
| 10    | If $n(A) = p$ , $n(B) = q$ , then the <b>total number of relation</b> that exist between A and B is $2^{pq}$ |                                                                                                                                                                                                                                          |                          |
| 11    | If $n(A) = p$ , $n(B) = q$ , then the <b>total number of functions</b> that exist between A and B is $q^p$   |                                                                                                                                                                                                                                          |                          |

## TYPES OF FUNCTIONS

|   | TYPES                                          | DEFINITION                                                                                                                                                                                                          | EXAMPLES                                                                              |
|---|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1 | <b>One – One Function ( injection )</b>        | A function $f: A \rightarrow B$ is called one-one function if distinct elements of A have distinct images in B.                                                                                                     |   |
| 2 | <b>Many – one Function</b>                     | A function $f: A \rightarrow B$ is called many - one function if two or more elements of A have same image in B.                                                                                                    |  |
| 3 | <b>Onto Function ( surjection )</b>            | A function $f: A \rightarrow B$ is said to be an onto function if every element in B has a pre-image in A. ( <b>Range of <math>f</math> = co-domain</b> )                                                           |  |
| 4 | <b>One-one and Onto Function ( Bijection )</b> | If a function $f: A \rightarrow B$ is both one-one and onto , then $f$ is called a bijection from A to B.                                                                                                           |  |
| 5 | <b>Into Function</b>                           | A function $f: A \rightarrow B$ is called an into function if there exists at least one element in B which is not the image of any element of A. ( <b>Range of <math>f</math> is a proper subset of co-domain</b> ) |  |

|    |                             |                                                                                                                                                                                                        |  |
|----|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6  | <b>Constant Function</b>    | A function $f:A \rightarrow B$ is called a constant function if every element of A has the same image in B. That is $f(x) = c, \forall x \in A$<br><b>(Range of <math>f</math> is a singleton set)</b> |  |
| 7  | <b>Identity Function</b>    | Let A be a non-empty set. Then the function $f:A \rightarrow A$ is called an identity function of A if maps each element of A into itself. That is $f(x) = x, \forall x \in A$ .                       |  |
| 8  | <b>Real valued Function</b> | A function $f:A \rightarrow B$ is called a real valued function if the range of $f$ is a subset of the set of all real numbers R. That is $f(A) \subseteq R$                                           |  |
| 9  | <b>Linear Function</b>      | A function $f:R \rightarrow R$ defined by $f(x) = mx + c$ is called a linear function.                                                                                                                 |  |
| 10 | <b>Quadratic Function</b>   | A function $f:R \rightarrow R$ defined by $f(x) = ax^2 + bx + c$ is called a quadratic function.                                                                                                       |  |
| 11 | <b>Cubic Function</b>       | A function $f:R \rightarrow R$ defined by $f(x) = ax^3 + bx^2 + cx + d$ is called a cubic function.                                                                                                    |  |
| 12 | <b>Reciprocal Function</b>  | A function $f:R - \{0\} \rightarrow R$ defined by $f(x) = \frac{1}{x}$ is called a reciprocal function.                                                                                                |  |

## 2. NUMBERS AND SEQUENCES

|   |                                          |                                                                                                                                                                                                                                          |
|---|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <b>Euclid's Divisions Lemma</b>          | Let a and b ( $a > b$ ) be any two positive integers. Then there exist unique integers q and r such that $a = bq + r, 0 \leq r < b$                                                                                                      |
| 2 | <b>Fundamental theorem of Arithmetic</b> | Every composite number can be written uniquely as the product of power of primes is called Fundamental Theorem of Arithmetic.                                                                                                            |
| 3 | <b>Congruence Modulo</b>                 | If $b - a = kn$ for some integer k. Then it can be written as $a \equiv b \pmod{n}$ . Here n is a called modulus. In other words $a \equiv b \pmod{n}$ means $a - b$ divisible by n.                                                     |
| 4 | <b>Sequences</b>                         | A real valued sequence is a function defined on the set of natural numbers and taking real values.                                                                                                                                       |
| 5 | <b>Arithmetic Progression</b>            | Let a and d be real numbers. Then the numbers of the form a, a+d, a+2d, a+3d, a+4d,..... is said to be Arithmetic Progression denoted by A.P. The number 'a' is called the first term and 'd' is called the common difference.           |
| 6 | <b>Geometric Progression</b>             | A Geometric Progression is a sequence in which each term is obtained by multiplying a fixed non-zero number to be preceding term except the first term. The fixed term is called common ratio. The common ratio is usually denoted by r. |

|   |                          |                                                                                 |
|---|--------------------------|---------------------------------------------------------------------------------|
| 7 | <b>Series</b>            | The sum of the terms of a sequence is called series.                            |
| 8 | <b>Arithmetic series</b> | A series whose terms are in Arithmetic Progression is called Arithmetic series. |
| 9 | <b>Geometric Series</b>  | A series whose terms are in Geometric Progression is called Geometric series.   |

## FORMULAE

|                                       |                                                        |                                                                      |
|---------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|
| 1                                     | Euclid's Division Lemma                                | $a = bq + r$ , $0 \leq r < b$                                        |
| <b>ARITHMETIC PROGRESSION ( A.P )</b> |                                                        |                                                                      |
| 2                                     | General Form an A.P                                    | $a, a+d, a+2d, a+3d, \dots$                                          |
| 3                                     | Common Difference                                      | $d = t_2 - t_1$                                                      |
| 4                                     | General term or $n^{\text{th}}$ term of an A.P         | $t_n = a + (n-1)d$                                                   |
| 5                                     | Number of terms of an A.P                              | $n = \left( \frac{l-a}{d} \right) + 1$                               |
| 6.                                    | Three consecutive terms of an A.P                      | $a-d, a, a+d$                                                        |
| 7                                     | Four consecutive terms of an A.P                       | $a-3d, a-d, a+d, a+3d$                                               |
| 8                                     | Condition for three numbers ( $a, b, c$ ) to be in A.P | $2b = a + c$                                                         |
| 9                                     | Sum of $n$ terms of an A.P                             | $S_n = \frac{n}{2} [ 2a + (n-1)d ]$<br>$S_n = \frac{n}{2} [ a + l ]$ |

## GEOMETRIC PROGRESSION ( G.P )

|    |                                                        |                                                                                                 |
|----|--------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 10 | General Form of G.P                                    | $a, ar, ar^2, ar^3, \dots$                                                                      |
| 11 | Common Ratio                                           | $r = \frac{t_2}{t_1}$                                                                           |
| 12 | General term or $n^{\text{th}}$ term of a G.P          | $t_n = ar^{n-1}$                                                                                |
| 13 | Three consecutive terms of a G.P                       | $\frac{a}{r}, a, ar$                                                                            |
| 14 | Four consecutive term of a G.P                         | $\frac{a}{r^3}, \frac{a}{r}, ar, ar^3$                                                          |
| 15 | Condition for three numbers ( $a, b, c$ ) to be in G.P | $b^2 = ac$                                                                                      |
| 16 | Sum of $n$ terms of a G.P                              | $t_n = \frac{a(r^n-1)}{r-1}, r > 1$<br>$t_n = \frac{a(1-r^n)}{1-r}, r < 1$<br>$t_n = na, n = 1$ |
| 17 | Sum to infinite terms of a G.P                         | $S_\infty = \frac{a}{1-r}, -1 < r < 1$                                                          |

## SPECIAL SERIES

|    |                                                                 |                                                          |
|----|-----------------------------------------------------------------|----------------------------------------------------------|
| 18 | Sum of first $n$ natural numbers                                | $\sum n = \frac{n(n+1)}{2}$                              |
| 19 | Sum of squares of first $n$ natural numbers                     | $\sum n^2 = \frac{n(n+1)(2n+1)}{6}$                      |
| 20 | Sum of cubes of first $n$ natural numbers                       | $\sum n^3 = \left[ \frac{n(n+1)}{2} \right]^2$           |
| 21 | Sum of first $n$ odd natural numbers                            | $\sum (2n-1) = n^2$                                      |
| 22 | Sum of first $n$ odd natural numbers ( last term $l$ is given ) | $1 + 2 + 3 + \dots + l = \left( \frac{l+1}{2} \right)^2$ |
| 23 | Sum of first $n$ even natural numbers                           | $\sum 2n = n(n+1)$                                       |
| 24 | Sum of natural numbers from $p$ to $q$                          | $\sum_{k=p}^q k = \frac{(q+p)(q-p+1)}{2}$                |

### 3.ALGEBRA

|   |                                                 |                                                                                                           |
|---|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1 | Simultaneous linear equation in three variables | General form of a linear equation in three variable is $ax + by + cz + d = 0$                             |
|   |                                                 | A linear equation in three variables represents a plane.                                                  |
|   |                                                 | A system of equation can have unique solution (or) infinitely many solution (or) no solution              |
|   |                                                 | The system of equation has <b>no solution</b> if any step comes as <b>0=1</b> while solving.              |
| 2 | Excluded Value                                  | The system of equation has infinitely <b>many solution</b> if any step comes as <b>0=0</b> while solving. |

### FORMULAE

|   |                                                                                          |                                                      |                                                                                                |
|---|------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 3 | Relationship between LCM and GCD                                                         |                                                      | $f(x) \times g(x) = LCM \times GCD$                                                            |
| 4 | General Form of Quadratic Equation                                                       |                                                      | $x^2 - (\text{Sum of roots})x + \text{Product of roots} = 0$                                   |
|   |                                                                                          |                                                      | $x^2 - (\alpha + \beta)x + \alpha\beta = 0$                                                    |
| 5 | Formula for finding Roots (Solution) of a Quadratic Equation                             |                                                      | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                                                       |
| 6 | If $\alpha$ and $\beta$ are the roots of a quadratic equation $ax^2 + bx + c = 0$ , then | Sum of roots                                         | $\alpha + \beta = \frac{-b}{a} = \frac{-\text{coefficient of } x}{\text{coefficient of } x^2}$ |
|   |                                                                                          | Product of roots                                     | $\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$          |
| 7 | $\text{Time} = \frac{\text{Distance}}{\text{Speed}}$                                     | $\text{Speed} = \frac{\text{Distance}}{\text{Time}}$ | Distance = Speed X Time                                                                        |

### NATURE OF ROOTS OF A QUADRATIC EQUATION

| Values of Discriminant $\Delta = b^2 - 4ac$ |              | Nature of roots        |
|---------------------------------------------|--------------|------------------------|
| 8                                           | $\Delta > 0$ | Real and unequal roots |
| 9                                           | $\Delta = 0$ | Real and Equal roots   |
| 10                                          | $\Delta < 0$ | No real roots          |

### SOME RESULTS INVOLVING $\alpha$ and $\beta$

### ALGEBRAIC IDENTITIES

|    |                                                                                   |    |                                                     |
|----|-----------------------------------------------------------------------------------|----|-----------------------------------------------------|
| 11 | $\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$                       | 19 | $(a + b)^2 = a^2 + b^2 + 2ab$                       |
| 12 | $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$                          | 20 | $(a - b)^2 = a^2 + b^2 - 2ab$                       |
| 13 | $\alpha^2 - \beta^2 = (\alpha + \beta)(\sqrt{(\alpha + \beta)^2 - 4\alpha\beta})$ | 21 | $(a + b)(a - b) = a^2 - b^2$                        |
| 14 | $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$          | 22 | $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ |
| 15 | $\alpha^3 - \beta^3 = (\alpha - \beta)^3 + 3\alpha\beta(\alpha - \beta)$          | 23 | $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$             |
| 16 | $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$                  | 24 | $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$             |
| 17 | $\alpha^4 - \beta^4 = (\alpha + \beta)(\alpha - \beta)(\alpha^2 + \beta^2)$       | 25 | $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$               |
| 18 | $(\alpha + \beta)^2 - (\alpha - \beta)^2 = 4\alpha\beta$                          | 26 | $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$               |

### MATRICES

|   |                                                      |                                                                          |              |
|---|------------------------------------------------------|--------------------------------------------------------------------------|--------------|
| 1 | Matrices                                             | A matrix is a rectangular array of elements arranged in row and columns. |              |
| 2 | If a matrix A has <b>m</b> rows and <b>n</b> columns | Order of matrix                                                          | <b>m × n</b> |
| 3 |                                                      | Total number of elements                                                 | <b>mn</b>    |

### TYPES OF MATRICES

|   | TYPES                         | DESCRIPTION                                                                                                | EXAMPLE                                                                 |
|---|-------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 4 | Row Matrix (Row vector)       | A matrix is said to be row matrix if it has <b>only one row</b> and any number of columns                  | $A = \begin{pmatrix} 1 & 3 & 5 \end{pmatrix}$                           |
| 5 | Column Matrix (Column vector) | A matrix is said to be column matrix if it has <b>only one column</b> and any number of rows               | $B = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$                         |
| 6 | Square Matrix                 | A matrix in which the <b>number of rows and number of columns are equal</b> is said to be a square matrix. | $C = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ |

|    |                                         |                                                                                                                                                     |                                                                                                                                              |
|----|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Diagonal Matrix                         | A square matrix in which <b>all the elements above and below the leading diagonal are zero</b> is called diagonal matrix                            | $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 9 \end{pmatrix}$                                                                      |
| 8  | Scalar Matrix                           | A diagonal matrix in which <b>all the leading diagonal elements are equal</b> is called a scalar matrix                                             | $E = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$                                                                      |
| 9  | Identity Matrix ( $I_n$ ) (Unit Matrix) | A square matrix in which elements in the <b>leading diagonal are all '1' and rest are all zero</b> is called an identity matrix.                    | $F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$                                                                      |
| 10 | Zero Matrix ( $O_n$ ) (Null Matrix)     | A matrix is said to be zero matrix or null matrix if <b>all its elements are zero</b> .                                                             | $G = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$                                                                                   |
| 11 | Lower Triangular Matrix                 | A square matrix in which <b>all the entries above the leading diagonal are zero</b> is called a lower triangular matrix                             | $H = \begin{pmatrix} 8 & 0 & 0 \\ 4 & 5 & 0 \\ -11 & 3 & 1 \end{pmatrix}$                                                                    |
| 12 | Upper diagonal Matrix                   | A square matrix in which <b>all the entries below the leading diagonal are zero</b> is called an upper triangular matrix                            | $M = \begin{pmatrix} 1 & 7 & -3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{pmatrix}$                                                                     |
| 13 | Transpose of a Matrix                   | The matrix which is obtained by <b>interchanging the elements in rows and columns</b> of the given matrix A is called transpose of A.               | $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$                      |
| 14 | Equal Matrix                            | Two matrices A and B are said to be equal if and only if they <b>have the same order</b> and <b>corresponding elements are equal</b> .              | $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} \sqrt{1} & \sqrt{4} \\ \sqrt{9} & \sqrt{16} \end{pmatrix}$<br>$A = B$ |
| 15 | Negative of a Matrix                    | The negative of a matrix A denoted by $-A$ is the matrix formed by <b>replacing each element</b> in the matrix A with <b>its additive inverse</b> . | $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, -A = \begin{pmatrix} -1 & -2 \\ -3 & -4 \end{pmatrix}$                                    |

### OPERATION ON MATRICES

|    | OPERATION                                  | CONDITION                                  |
|----|--------------------------------------------|--------------------------------------------|
| 16 | Two matrices can be added or subtracted if | They have same order                       |
| 17 | Two matrices A and B can be multiplied if  | Number of column of A = Number of row of B |

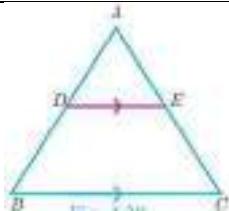
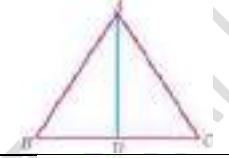
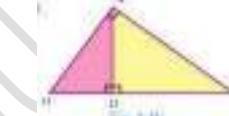
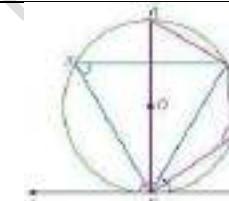
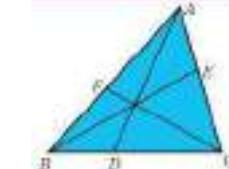
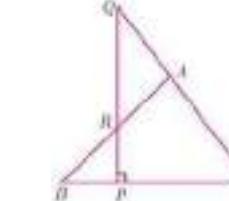
### PROPERTIES OF ADDITION

|    |                                                    |                             |
|----|----------------------------------------------------|-----------------------------|
| 18 | Commutative Property of Matrix Addition            | $A + B = B + A$             |
| 19 | Associative Property of Matrix Addition            | $A + (B + C) = (A + B) + C$ |
| 20 | Associative Property of Scalar Multiplication      | $(pq)A = p(qA)$             |
| 21 | Scalar Identity Property                           | $IA = A$                    |
| 22 | Distributive Property of scalar and two matrices   | $p(A + B) = pA + pB$        |
| 23 | Distributive Property of two scalars with a matrix | $(p + q)A = pA + qA$        |
| 24 | Existence of Additive Identity                     | $A + O = O + A = A$         |
| 25 | Existence of Additive Inverse                      | $A + (-A) = (-A) + A = O$   |

### PROPERTIES OF MULTIPLICATION OF MATRIX

|    |                                                     |                      |
|----|-----------------------------------------------------|----------------------|
| 26 | Matrix Multiplication is not commutative in general | $AB \neq BA$         |
| 27 | Matrix Multiplication is always associative         | $(AB)C = A(BC)$      |
| 28 | Matrix Multiplication is distributive over addition | $A(B + C) = AB + AC$ |
|    |                                                     | $(A + B)C = AC + BC$ |
| 29 | Multiplication of a Matrix by a unit Matrix         | $AI = IA = A$        |
| 30 | Reversal law for Transpose of matrices              | $(AB)^T = B^T A^T$   |

## 4.GEOMETRY







### CONGRUENCE AND SIMILAR TRIANGLES

|   |                                                     |                                                                                                                                                                                                                                                                  |  |
|---|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 | <b>Congruency of Triangles</b>                      | <p>Two triangles are said to be congruent if their corresponding angles are equal and corresponding sides are equal.</p> $\angle A = \angle P, \quad \angle B = \angle Q, \quad \angle C = \angle R$ $AB = PQ, \quad BC = QR, \quad CA = RP$                     |  |
| 2 | <b>Similar Triangles</b>                            | <p>Two triangles are said to be similar if their corresponding angles are equal and their corresponding sides are proportional.</p> $\angle A = \angle P, \quad \angle B = \angle Q, \quad \angle C = \angle R$ $AB \neq PQ, \quad BC \neq QR, \quad CA \neq RP$ |  |
| 3 | <b>AA Criterion of Similarity (AAA Similarity )</b> | <p>If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangle are similar.</p> $\angle A = \angle P = 1, \quad \angle B = \angle Q = 2$                                                                       |  |
| 4 | <b>SAS Criterion of Similarity</b>                  | <p>If one angle of a triangle is equal to one angle of another triangle and if the sides including them are proportional, then the two triangles are similar.</p> $\angle A = \angle P = 1, \quad \frac{AB}{PQ} = \frac{AC}{PR}$                                 |  |
| 5 | <b>SSS Criterion of Similarity</b>                  | <p>If three sides of a triangle are proportional to the three corresponding sides of another triangle, then the two triangles are similar.</p> $\frac{AB}{PQ} = \frac{AC}{PR} = \frac{BC}{QR}$                                                                   |  |

### SOME USEFUL RESULTS ON SIMILAR TRIANGLES

|   |                                                                                                                                                                                                                                                            |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6 | <p>If two triangles are similar, then the ratio of the corresponding sides are equal to the ratio of their corresponding altitudes</p> $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} = \frac{AD}{PS} = \frac{BE}{QT} = \frac{CF}{RU}$                     |  |
| 7 | <p>If two triangles are similar, then the ratio of the corresponding sides are equal to the ratio of the corresponding perimeters.</p> $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} = \frac{AB+BC+CA}{DE+EF+FD}$                                         |  |
| 8 | <p>The ratio of the area of two similar triangles are equal to the ratio of the squares of their corresponding sides.</p> $\frac{\text{area}(\Delta ABC)}{\text{area}(\Delta PQR)} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$            |  |
| 9 | <p>If two triangles have common vertex and their bases are on the same straight line, the ratio between their areas is equal to the ratio between the length of their bases.</p> $\frac{\text{area}(\Delta ABD)}{\text{area}(\Delta BDC)} = \frac{AD}{DC}$ |  |

**THEOREMS**

|    | <b>Theorem</b>                                                        | <b>Statement</b>                                                                                                                                                                                                                                                                | <b>Diagram</b>                                                                        |
|----|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 10 | <b>Thales Theorem</b><br><b>Basic Proportionality Theorem ( BPT )</b> | A straight line drawn parallel to a side of triangle intersecting the other sides , divides the sides in the same ratio.<br>$\frac{AD}{DB} = \frac{AE}{EC}$<br>Corollary $(i). \frac{AB}{AD} = \frac{AC}{AE} \quad (ii). \frac{AB}{DB} = \frac{AC}{EC}$                         |    |
| 11 | <b>Angle Bisector Theorem</b>                                         | The internal bisector of an angle of a triangle divides the opposite internally in the ratio of the corresponding sides containing the angle.<br>$\frac{AB}{AC} = \frac{BD}{DC}$                                                                                                |    |
| 12 | <b>Pythagoras Theorem</b>                                             | In a right angle triangle , the square of the hypotenuse is equal to the sum of the squares of the other two sides.<br>$BC^2 = AB^2 + AC^2$                                                                                                                                     |    |
| 13 | <b>Alternate Segment Theorem</b>                                      | If a line touches a circle and from the point of contact a chord is drawn , the angles between the tangent and the chord are respectively equal to the angle in the corresponding alternate segments<br>$(i). \angle QPB = \angle PSQ \quad (ii). \angle QPA = \angle PTQ$      |    |
| 14 | <b>Cevian</b>                                                         | A cevian is a line segment that extends from one vertex of a triangle to the opposite side.                                                                                                                                                                                     | Examples<br>Median , Altitude , Angle bisector are cevians                            |
| 15 | <b>Ceva's Theorem</b>                                                 | Let ABC be a triangle and let D, E, F be points on lines BC , CA , AB respectively. Then the cevians AD,BE,CF are concurrent if and only if $\frac{BD}{DC} \times \frac{CE}{EA} \times \frac{AF}{FB} = 1$ where the lengths are directed.                                       |  |
| 16 | <b>Menelaus Theorem</b>                                               | A necessary and sufficient condition for points P,Q,R on the respective sides BC,CA,AB ( or their extension ) of a triangle ABC to be collinear is that $\frac{BP}{PC} \times \frac{CQ}{QA} \times \frac{AR}{RB} = -1$ where all segments in the formula are directed segments. |  |
| 17 | <b>Secant</b>                                                         | If a straight line intersects the circle at two points, then the line is called Secant of the circle.                                                                                                                                                                           |                                                                                       |
| 18 | <b>Tangent</b>                                                        | If a line touches the circle at only one point , then it is called tangent of the circle                                                                                                                                                                                        |                                                                                       |
|    |                                                                       | A tangent to a circle will be perpendicular to the radius at the point of contact.                                                                                                                                                                                              |                                                                                       |
|    |                                                                       | Two tangents can be drawn from any exterior point of a circle.                                                                                                                                                                                                                  |                                                                                       |
|    |                                                                       | The lengths of the two tangents drawn from an exterior point to a circle are equal.                                                                                                                                                                                             |                                                                                       |
|    |                                                                       | Two direct common tangents drawn to two circles are equal in length.                                                                                                                                                                                                            |                                                                                       |

**5 . COORDINATE GEOMETRY**

|   |                                       |                                                                   |
|---|---------------------------------------|-------------------------------------------------------------------|
| 1 | Distance between two points           | $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$                        |
| 2 | Mid point                             | $\left( \frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right)$             |
| 3 | Centroid                              | $\left( \frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3} \right)$     |
| 4 | Section Formula ( Internal Division ) | $\left( \frac{lx_2 + mx_1}{l+m}, \frac{ly_2 + my_1}{l+m} \right)$ |

|                                                       |                                                                         |                                                                                 |                                                                                                        |  |  |
|-------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| 5                                                     | Section Formula ( External Division )                                   |                                                                                 | $\left( \frac{lx_2 - mx_1}{l-m}, \frac{ly_2 - my_1}{l-m} \right)$                                      |  |  |
| 6                                                     | Area of Triangle                                                        |                                                                                 | $\frac{1}{2} bh$                                                                                       |  |  |
|                                                       |                                                                         |                                                                                 | $\sqrt{s(s-a)(s-b)(s-c)}, s = \frac{a+b+c}{2}$                                                         |  |  |
|                                                       |                                                                         |                                                                                 | $\frac{1}{2} \begin{pmatrix} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{pmatrix}$             |  |  |
| 7                                                     | Area of quadrilateral                                                   |                                                                                 | $\frac{1}{2} \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{pmatrix}$ |  |  |
|                                                       |                                                                         |                                                                                 | $\frac{1}{2} \begin{pmatrix} x_1 - x_3 & y_1 - y_3 \\ x_2 - x_4 & y_2 - y_4 \end{pmatrix}$             |  |  |
| <b>FORMULA FOR SLOPE</b>                              |                                                                         |                                                                                 |                                                                                                        |  |  |
| 8                                                     | If angle is given                                                       | $m = \tan \theta$                                                               |                                                                                                        |  |  |
| 9                                                     | If two points are given                                                 | $m = \frac{y_2 - y_1}{x_2 - x_1}$                                               |                                                                                                        |  |  |
| 10                                                    | Slope of the straight line $ax + by + c = 0$                            | $m = \frac{-a}{b} = \frac{-\text{coefficient of } x}{\text{coefficient of } y}$ |                                                                                                        |  |  |
| <b>COLLINEARITY OF THREE POINTS</b>                   |                                                                         |                                                                                 |                                                                                                        |  |  |
| 11                                                    | If Three points A, B, C are collinear                                   |                                                                                 | $\begin{pmatrix} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{pmatrix} = 0$                     |  |  |
|                                                       |                                                                         |                                                                                 | Slope of AB = Slope of BC (or) Slope of AC                                                             |  |  |
| <b>CONDITION FOR PARALLELISM AND PERPENDICULARITY</b> |                                                                         |                                                                                 |                                                                                                        |  |  |
| 12                                                    | If two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are    | parallel                                                                        | $m_1 = m_2$ ( OR ) $\frac{a_1}{a_2} = \frac{b_1}{b_2}$                                                 |  |  |
|                                                       |                                                                         | perpendicular                                                                   | $m_1 \times m_2 = -1$ ( OR ) $a_1a_2 + b_1b_2 = 0$                                                     |  |  |
| <b>EQUATION OF STRAIGHT LINES</b>                     |                                                                         |                                                                                 |                                                                                                        |  |  |
| 13                                                    | Equation of X axis                                                      | $y = 0$                                                                         |                                                                                                        |  |  |
| 14                                                    | Equation of Y axis                                                      | $x = 0$                                                                         |                                                                                                        |  |  |
| 15                                                    | Equation of a straight line parallel to X axis                          | $y = \pm b$                                                                     |                                                                                                        |  |  |
| 16                                                    | Equation of a straight line parallel to Y axis                          | $x = \pm c$                                                                     |                                                                                                        |  |  |
| 17                                                    | Equation of straight line parallel to $ax + by + c = 0$                 | $ax + by + k = 0$                                                               |                                                                                                        |  |  |
| 18                                                    | Equation of a straight line perpendicular to $ax + by + c = 0$          | $bx - ay + k = 0$                                                               |                                                                                                        |  |  |
| 19                                                    | Equation of straight line passing through origin                        | $y = mx$                                                                        |                                                                                                        |  |  |
| 20                                                    | Equation of straight line ( Slope - Intercept form )                    | $y = mx + c$                                                                    |                                                                                                        |  |  |
| 21                                                    | Equation of straight line ( Point - Slope form )                        | $y - y_1 = m(x - x_1)$                                                          |                                                                                                        |  |  |
| 22                                                    | Equation of straight line ( Two point form )                            | $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$                         |                                                                                                        |  |  |
| 23                                                    | Equation of straight line ( Intercept form )                            | $\frac{x}{a} + \frac{y}{b} = 1$                                                 |                                                                                                        |  |  |
| <b>6. TRIGONOMETRY</b>                                |                                                                         |                                                                                 |                                                                                                        |  |  |
| <b>TRIGONOMETRY RATIOS</b>                            |                                                                         |                                                                                 |                                                                                                        |  |  |
| 1                                                     | $\sin \theta = \frac{\text{Opposite side}}{\text{Hypotenuse}}$          | $\cos \theta = \frac{\text{Adjacent side}}{\text{Hypotenuse}}$                  | $\tan \theta = \frac{\text{Opposite side}}{\text{Adjacent side}}$                                      |  |  |
| 2                                                     | $\text{cosec } \theta = \frac{\text{Hypotenuse}}{\text{Opposite side}}$ | $\sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent side}}$                  | $\cot \theta = \frac{\text{Adjacent side}}{\text{Opposite side}}$                                      |  |  |
| <b>COMPLEMENTARY ANGLES</b>                           |                                                                         |                                                                                 |                                                                                                        |  |  |
| 3                                                     | $\sin(90 - \theta) = \cos \theta$                                       | $\cos(90 - \theta) = \sin \theta$                                               | $\tan(90 - \theta) = \cot \theta$                                                                      |  |  |
| 4                                                     | $\text{cosec}(90 - \theta) = \sec \theta$                               | $\sec(90 - \theta) = \text{cosec } \theta$                                      | $\cot(90 - \theta) = \tan \theta$                                                                      |  |  |
| <b>RECIPROCAL RATIOS</b>                              |                                                                         |                                                                                 |                                                                                                        |  |  |
| 5                                                     | $\sin \theta = \frac{1}{\text{cosec } \theta}$                          | $\cos \theta = \frac{1}{\sec \theta}$                                           | $\tan \theta = \frac{1}{\cot \theta}$                                                                  |  |  |
| 6                                                     | $\text{cosec } \theta = \frac{1}{\sin \theta}$                          | $\sec \theta = \frac{1}{\cos \theta}$                                           | $\cot \theta = \frac{1}{\tan \theta}$                                                                  |  |  |

### TRIGONOMETRIC IDENTITIES

|   | Identity                                            | Equal forms                                         |                                                     |
|---|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 7 | $\sin^2 \theta + \cos^2 \theta = 1$                 | $\sin^2 \theta = 1 - \cos^2 \theta$                 | $\cos^2 \theta = 1 - \sin^2 \theta$                 |
| 8 | $1 + \tan^2 \theta = \sec^2 \theta$                 | $\tan^2 \theta = \sec^2 \theta - 1$                 | $\sec^2 \theta - \tan^2 \theta = 1$                 |
| 9 | $1 + \cot^2 \theta = \operatorname{cosec}^2 \theta$ | $\cot^2 \theta = \operatorname{cosec}^2 \theta - 1$ | $\operatorname{cosec}^2 \theta - \cot^2 \theta = 1$ |

### TRIGONOMETRIC TABLE

|                               | 0°        | 30°                  | 45°                  | 60°                  | 90°       |
|-------------------------------|-----------|----------------------|----------------------|----------------------|-----------|
| $\sin \theta$                 | 0         | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1         |
| $\cos \theta$                 | 1         | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0         |
| $\tan \theta$                 | 0         | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | Undefined |
| $\operatorname{cosec} \theta$ | Undefined | 2                    | $\sqrt{2}$           | $\frac{2}{\sqrt{3}}$ | 1         |
| $\sec \theta$                 | 1         | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$           | 2                    | Undefined |
| $\cot \theta$                 | Undefined | $\sqrt{3}$           | 1                    | $\frac{1}{\sqrt{3}}$ | 0         |

### HEIGHT AND DISTANCE

|    |                                                                |                                                                                                                  |
|----|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 10 | Distance between two objects are in opposite direction         | $d = h [ \cot \alpha + \cot \beta ]$                                                                             |
| 11 | Distance between two objects are in same direction             | $d = h [ \cot \alpha - \cot \beta ]$                                                                             |
| 12 | Distance of two objects                                        | $x = \frac{y [ \tan \beta - \tan \alpha ]}{\tan \alpha}$<br>$y = \frac{x \tan \alpha}{\tan \beta - \tan \alpha}$ |
| 13 | Height of two different objects                                | $H = \frac{h \tan \beta}{\tan \beta - \tan \alpha}$<br>$h = \frac{H [ \tan \beta - \tan \alpha ]}{\tan \beta}$   |
| 14 | Height of two objects are in angle of elevation and depression | $H = h [ 1 + \tan \alpha \cot \beta ]$<br>$h = \frac{H}{1 + \tan \alpha \cot \beta}$                             |

### 7. MENSURATION

|    | SHAPES                   | CSA / LSA         | TSA                               | VOLUME                                |
|----|--------------------------|-------------------|-----------------------------------|---------------------------------------|
| 1  | <b>Cube</b>              | $4a^2$            | $6a^2$                            | $a^3$                                 |
| 2  | <b>Cuboid</b>            | $2(l + b)h$       | $2(lb + bh + lh)$                 | $l \times b \times h$                 |
| 3  | <b>Solid Cylinder</b>    | $2\pi rh$         | $2\pi r(h + r)$                   | $\pi r^2 h$                           |
| 4  | <b>Hollow Cylinder</b>   | $2\pi(R + r)h$    | $2\pi(R + r)(R - r + h)$          | $\pi(R^2 - r^2)h$                     |
| 5  | <b>Solid Sphere</b>      | $4\pi r^2$        | $4\pi r^2$                        | $\frac{4}{3}\pi r^3$                  |
| 6  | <b>Hollow Sphere</b>     | $4\pi R^2$        | $4\pi(R^2 + r^2)$                 | $\frac{4}{3}\pi(R^3 - r^3)$           |
| 7  | <b>Hemisphere</b>        | $2\pi r^2$        | $3\pi r^2$                        | $\frac{2}{3}\pi r^3$                  |
| 8  | <b>Hollow Hemisphere</b> | $2\pi(R^2 + r^2)$ | $\pi(3R^2 + r^2)$                 | $\frac{2}{3}\pi(R^3 - r^3)$           |
| 9  | <b>Solid Cone</b>        | $\pi r l$         | $\pi r(l + r)$                    | $\frac{1}{3}\pi r^2 h$                |
| 10 | <b>Frustum</b>           | $\pi(R + r)l$     | $\pi(R + r)l + \pi R^2 + \pi r^2$ | $\frac{1}{3}\pi h [ R^2 + r^2 + Rr ]$ |

|    |                                             |                                                                                 |
|----|---------------------------------------------|---------------------------------------------------------------------------------|
| 11 | Slant height of cone $l = \sqrt{r^2 + h^2}$ | Slant height of frustum $l = \sqrt{h^2 + (R - r)^2}$                            |
| 12 | Radius of cone $r = \sqrt{l^2 - h^2}$       |                                                                                 |
| 13 | Height of cone $h = \sqrt{l^2 - r^2}$       | Volume of water flows out through a pipe =<br>Cross section area X Speed X Time |
| 14 | Area of Circle = $\pi r^2$                  | Circumference of Circle = $2\pi r$                                              |
| 15 | Weight = Volume X Density                   |                                                                                 |

### SECTOR AND CONE

|    |                                                                                                                           |
|----|---------------------------------------------------------------------------------------------------------------------------|
| 16 | Area of sector ( $\frac{\theta}{360^\circ} \times \pi R^2$ ) = CSA of Cone ( $\pi r l$ )                                  |
| 17 | Length of arc a of sector ( $\frac{\theta}{360^\circ} \times 2\pi R$ ) = Circumference of base of the Cone ( $(2\pi r)$ ) |
| 18 | Radius of sector (R) = Slant height of cone ( l )                                                                         |

### CONVERSIONS

|    |                                                                                                                  |                                     |                                       |                                      |
|----|------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|
| 19 | $1 \text{ m}^3 = 1000 \text{ litres}$                                                                            | $1 \text{ d.m}^3 = 1 \text{ litre}$ | $1000 \text{ cm}^3 = 1 \text{ litre}$ | $1 \text{ kl} = 1000 \text{ litres}$ |
| 20 | $1 \text{ cm} = 10 \text{ mm}$                                                                                   | $1 \text{ m} = 100 \text{ cm}$      | $1 \text{ km} = 1000 \text{ m}$       |                                      |
| 21 | When <b>converting one solid to another solid</b> , the <b>volumes are equal</b> but they differ in surface area |                                     |                                       |                                      |

## 8. STATISTICS AND PROBABILITY

|   |                                               |                              |                                    |                      |
|---|-----------------------------------------------|------------------------------|------------------------------------|----------------------|
| 1 | <b>Measures of Central Tendency</b>           | 1.Arithmetic Mean            | 2. Median                          | 3. Mode              |
| 2 | <b>Measures of Dispersion</b>                 | 1.Range                      | 2.Mean deviation                   | 3.Quartile deviation |
| 3 | Mean                                          | $\bar{x} = \frac{\sum x}{n}$ |                                    |                      |
| 4 | Range                                         |                              | $R = L - S$                        |                      |
| 5 | Co efficient of range                         |                              | $\frac{L-S}{L+S}$                  |                      |
| 6 | Standard deviation of first n natural numbers |                              | $\sigma = \sqrt{\frac{n^2-1}{12}}$ |                      |
| 7 | Variance of first n natural numbers           |                              | $\sigma^2 = \frac{n^2-1}{12}$      |                      |
| 8 | Standard deviation                            |                              | $\sqrt{\text{Variance}}$           |                      |
| 9 | Variance                                      |                              | $(\text{Standard Deviation})^2$    |                      |

### STANDARD DEVIATION

|    |                              | UNGROUPED DATA                                                                                              | GROUPED DATA                                                                                                            |
|----|------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 10 | <b>Direct Method</b>         | $\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$                                      | -----                                                                                                                   |
| 11 | <b>Actual Mean Method</b>    | $\sigma = \sqrt{\frac{\sum d^2}{n}} , \quad d = x - \bar{x}$                                                | $\sigma = \sqrt{\frac{\sum fd^2}{\sum f}} , \quad d = x - \bar{x}$                                                      |
| 12 | <b>Assumed Mean Method</b>   | $\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} , \quad d = x - A$                    | $\sigma = \sqrt{\frac{\sum fd^2}{\sum f} - \left(\frac{\sum fd}{\sum f}\right)^2} , \quad d = x - A$                    |
| 13 | <b>Step Deviation Method</b> | $\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} \times c , \quad d = \frac{x - A}{c}$ | $\sigma = \sqrt{\frac{\sum fd^2}{\sum f} - \left(\frac{\sum fd}{\sum f}\right)^2} \times c , \quad d = \frac{x - A}{c}$ |

|    |                                                                                                                  |                                          |
|----|------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 14 | Co efficient of Variation                                                                                        | $CV = \frac{\sigma}{\bar{x}} \times 100$ |
| 15 | If co efficient of variation value is less, then the observations of corresponding data are <b>Consistent</b>    |                                          |
| 16 | If co efficient of variation value is more , then the observations of corresponding data are <b>Inconsistent</b> |                                          |

## PROBABILITY

|   |                                    |                                                                                             |
|---|------------------------------------|---------------------------------------------------------------------------------------------|
| 1 | Probability of an Event            | $P(A) = \frac{\text{Number of outcomes favourable to } A}{\text{Total number of outcomes}}$ |
|   |                                    | $P(A) = \frac{n(A)}{n(S)}$                                                                  |
| 2 | Probability of sure event          | $P(S) = 1$                                                                                  |
| 3 | Probability of impossible event    | $P(\emptyset) = 0$                                                                          |
| 4 | Probability value always lies from | 0 to 1 (OR) $0 \leq P(A) \leq 1$                                                            |
| 5 | Probability of complement event    | $P(\bar{A}) = 1 - P(A)$ $[\because P(A) + P(\bar{A}) = 1]$                                  |

## ADDITION THEOREM OF PROBABILITY

|    |                                                                                                          |                                                  |
|----|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 6  | $P(A \cup B) = P(A) + P(B) - P(A \cap B)$                                                                |                                                  |
| 7  | $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$ |                                                  |
| 8  | A and B are mutually exclusive events                                                                    | $P(A \cap B) = 0$<br>$P(A \cup B) = P(A) + P(B)$ |
| 9  | A , B and C are mutually exclusive events                                                                | $P(A \cup B \cup C) = P(A) + P(B) + P(C)$        |
| 10 | $P(A \cap \bar{B}) = P(\text{only } A) = P(A) - P(A \cap B)$                                             |                                                  |
| 11 | $P(\bar{A} \cap B) = P(\text{only } B) = P(B) - P(A \cap B)$                                             |                                                  |

## COIN

| 12 | Random Experiment           | Sample Space (S)                                  | Total number of outcomes n(S) |
|----|-----------------------------|---------------------------------------------------|-------------------------------|
| 13 | Tossing one unbiased coin   | { H , T }                                         | 2                             |
| 14 | Tossing two unbiased coin   | { HH , HT , TH , TT }                             | 4                             |
| 15 | Tossing three unbiased coin | { HHH , HHT , HTH , THH , TTT , TTH , THT , HTT } | 8                             |

## DICE

|    |                            |                                                                                                                                                                                                                                                                                                   |     |
|----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 16 | Rolling one unbiased die   | { 1 , 2 , 3 , 4 , 5 , 6 }                                                                                                                                                                                                                                                                         | 6   |
| 17 | Rolling two unbiased die   | { (1,1) , (1,2) , (1,3) , (1,4) , (1,5) , (1,6) , (2,1) , (2,2) , (2,3) , (2,4) , (2,5) , (2,6) , (3,1) , (3,2) , (3,3) , (3,4) , (3,5) , (3,6) , (4,1) , (4,2) , (4,3) , (4,4) , (4,5) , (4,6) , (5,1) , (5,2) , (5,3) , (5,4) , (5,5) , (5,6) , (6,1) , (6,2) , (6,3) , (6,4) , (6,5) , (6,6) } | 36  |
| 18 | Rolling three unbiased die | {(1,1,1) , (1,1,2) , ..... (6,6,6) }                                                                                                                                                                                                                                                              | 216 |

## PLAYING CARDS

|    |                       |                                 |                  |                    |
|----|-----------------------|---------------------------------|------------------|--------------------|
| 19 | Total number of cards | 52                              |                  |                    |
|    | <b>Card</b>           | <b>No.of cards</b>              | <b>Card</b>      | <b>No.of cards</b> |
| 20 | Spade card            | 13                              | Jack card        | 4                  |
| 21 | Clavor card           | 13                              | Ace card         | 4                  |
| 22 | Heart card            | 13                              | Face card        | 12                 |
| 23 | Diamond card          | 13                              | Number card      | 36                 |
| 24 | Red card              | 26                              | Red King card    | 2                  |
| 25 | Block card            | 26                              | Block king card  | 2                  |
| 26 | King card             | 4                               | Red Queen card   | 2                  |
| 27 | Queen card            | 4                               | Block Queen card | 2                  |
| 28 | Leap Year             | 366 days ( OR ) 52 weeks 2 days |                  |                    |
| 29 | Ordinary year         | 365 days ( OR ) 52 weeks 1 day  |                  |                    |